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Strong Stability of the Batch Arrival
Queueing Systems

L. BOUKIR, L. BOUALLOUCHE-MEDJKOUNE,
AND D. AÏSSANI

L.A.M.O.S.: Laboratory of Modeling and Optimization of Systems,
University of Béjaïa, Algeria

In this work, we use the strong stability method to study the batch arrival queue
after a perturbation of the batch size distribution. We show that, under some
hypotheses, the characteristics of the batch arrival queueing system MX/M/1 may
be approximated by the correspondent characteristics of the system MGeo/M/1.

After clarifying the conditions of approximation, we obtain stability inequalities
with an exact computation of constants.

Keywords Approximation; Batch arrival queues; Batch size; Geometric
distribution; Perturbation; Strong stability.

Mathematics Subject Classification 60K25; 68M20.

During the investigation of classical problems of the queueing theory, it was
assumed that customers arrived one at a time. But, in many situations encountered
in practice, customers arrive in batch of random size. These situations can be
represented by queueing models with batch arrivals. These models have been studied
by several researchers such as Medhi [19], Neuts [14], and Gross and Harris
[12]. A bibliography on the subject can be found in Chaudhry and Templeton
[11]. The batch arrival queueing systems have mostly been studied for modeling
the performance of specific systems such as computer systems, communication
networks, production systems, transportation systems, manufacturing systems (in
the electrical and electronics industry) [2, 12].

To obtain information about the behavior of modeled phenomena, we are
interested in the performance measures (response time, utilization rate, etc.). But
the study of performance of batch arrival queues is limited in scope because of the
complexity of the known results. Therefore, we generally resort to approximation
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Strong Stability of the Batch Arrival Queue 9

methods. In the case of the study of the waiting time distribution [9, 13] gave
approximations (for this distribution) in the queue MX/G/1. The approximation of
the waiting time distribution of the queue GIX/G/1 was given by Chaudhry and
Gupta [10]. Among the approximation approaches, there are also stability methods
to approximate the characteristics of the complex system (real) by those of the much
simpler system (ideal).

In the stability theory, we establish the domain within which a model may be
used as a good approximation or idealization to the real system under consideration
(see [4, 17, 25, 26]). In other words, we clarify here the conditions for which
the proximity in one way or another of the parameters of the system involves
the proximity of the studied characteristics. Such results give the possibility of
approximating some systems (very complicated) by other systems more exploitable
or much simpler.

There are numerous results on perturbation bounds of Markov chains. General
results are summarized by Heidergott and Hordijk [15]. One group of results
concerns the sensitivity of the stationary distribution of a finite, homogeneous
Markov chain (see [16]), and the bounds are derived using methods of matrix
analysis; see the review Cho and Mayer [8] and recent papers of Kirkland [20] and
Neumann and Xu [22]. Another group includes perturbation bounds for finite-time
and invariant distributions of Markov chains with general state space (see [1, 3, 18,
21, 25]). In these works, the bounds for general Markov chains are expressed in
terms of ergodicity coefficients of the iterated transition kernel, which are difficult
to compute for infinite state spaces. These results were obtained using operator-
theoretic and probabilistic methods.

The strong stability method (also called operator method) has been developed
in the early 1980s by Aïssani and Kartashov [1]. It allows both to make qualitative
and quantitative analysis of some complex systems. This approach assumes that
the perturbation of the transition kernel is small with respect to a certain norm.
Such a strict condition allows us to obtain better estimations on the stationary
characteristics of the perturbed chain. In addition, using this method, it is possible
to obtain inequalities of stability with an exact computation of the constants.

This approach, based on the perturbation of operators, is applicable to all
stochastic models which may be governed by a Markov chain. In particular, it has
been applied to several queueing models (see [5–7, 24]) and inventory models (see
[23]).

In this work, we apply this method to batch arrival queueing systems. We are
exactly interested to study the strong stability of the stationary distribution of the
imbedded Markov in the batch arrival queue MGeo/M/1 after a small perturbation
of the batch size distribution. We show that under some hypotheses, the
characteristics of the batch arrival queueing system MX/M/1 may be approximated
by the correspondent characteristics of the system MGeo/M/1. In the next, we obtain
the error of approximation on the stationary distribution of the considered Markov
chain.

Specify here that the perturbed parameter is the distribution of the batch size.
This parameter plays an important role in the batch arrival queueing systems. As the
strong stability method supposes that the perturbation is small, then the distribution
of the batch size of the real system must be sufficiently close to the geometric law.

This article is organized as follows: First, the preliminaries and notations
are given in Section 1. In Section 2, we described the considered queueing
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10 Boukir et al.

systems (MX/M/1 and MGeo/M/1). In Section 3, we clarified the domain within
the imbedded Markov chain of the system MGeo/M/1 is strongly stable after a
small perturbation of its size distribution. The deviation of the transition kernel is
determined in Section 4. Finally, the inequalities of stability are obtained in the last
section and we concluded with a short conclusion. An Appendix is included with
the article.

1. Notations and Preliminaries

In this section, we introduce necessary notations adapted to our work. For more
details see Kartashov [18] and comments in the Appendix.

Consider the measurable space ��, �����, where ���� is the �-algebra
engendered by all singletons �j�� j ∈ �.

Let � =��j� be the space of finite measures on ���� and � = �f�j�� the space
of bounded measurable functions on �. We associate to each transition operator P
the linear mappings

��P�k =
∑
j≥0

�jPjk (1)

�Pf��k� = ∑
i≥0

f�i�Pki (2)

Introduce on � the class of norms of the form

���v =
∑
j≥0

v�j���j� (3)

where v is an arbitrary measurable function (not necessary finite) bounded from
below by a positive constant. This norm induces in the space � the norm

�f�v = sup
k≥0

�f�k��
v�k�

(4)

Let B, the space of bounded linear operators on the space �� ∈ � � ���v < ��, with
norm

�P�v = sup
k≥0

1
v�k�

∑
j≥0

v�j��Pkj� (5)

2. Description of the Queueing Systems

In this section, we describe the queueing systems MX/M/1 and MGeo/M/1 and clarify
their imbedded Markov chains and the correspondent kernels.

2.1. Description of the Queue MX/M/1

The queueMX/M/1 may be described in the following manner (see [9, 13]).
The customers arrive in batch of random size C, following a Poisson process

with parameter 	, where Pr�C = n� = cn, and they are individually served. The
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Strong Stability of the Batch Arrival Queue 11

service times are independent and distributed following an exponential law with
mean 1

�
.

Let C�z�, a generating function of the batch size defined as follows:

C�z� = E�zc� =
�∑
n=1

cnz
n ��z� ≤ 1�

and let Ai, the number of customers arriving at the time instant ti; then Pr�Ai =
k� = ck.

We have Pr�A1 + A2 + · · · + Ak = n� = cn ⊗ cn ⊗ · · · ⊗ cn︸ ︷︷ ︸
convolution k-product

= C�k�
n where �C�k�

n �

is the convolution k-product of cn, such that: C�1�
n = Pr�Ai = n� = cn and C�0�

n ={
1 if n=0
0 if n>0

Then Pr�n customers arrive during �0� t�� = pn�t�, where

pn�t� =
n∑

k=0

e−	t �	t�
k

k! C�k�
n �n ≥ 0�


Consider the following regeneration points:

• the time instant of a customer departure;
• the end of the server idle period.

The random variable Xn, representing the number of customers in the system
MX/M/1 immediately after the nth regeneration point, forms a discrete-time
Markov chain. Consider the process Bn “the number of customers arriving during
the time of the nth service.”

The random variables Bn are independent, their common distribution is
kn = Pr�n arrivals during the service period�.

kn =
n∑

k=0

C�k�
n

�	k

�	+ ��k+1
(6)

Then

Xn+1 =
{
Xn − 1+ Bn+1 if Xn ≥ 1

C if Xn = 0

This shows that Xn+1 depends only on Xn and on Bn+1 and not on the values
taken by Xn−1, Xn−2� 
 
 
 This means that the sequence {Xn� n = 1� 2� 
 
 
 } forms an
imbedded Markov chain of the process {X�t�� t ≥ 0}.

Transitional Regime. The transition probabilities of the imbedded Markov chain
{Xn� n = 1� 2� 
 
 
 } allow us to describe the general expression of the transition
kernel P = �Pij�, where

Pij =


cj if j ≥ 1� i = 0

kj+1−i if 1 ≤ i ≤ j + 1

0 otherwise

(7)

where kj is defined in (6).
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12 Boukir et al.

Remark 2.1. According to the transition matrix, the Markov chain Xn is irreducible
and aperiodic, and we can show that it converges to a limiting distribution if �′ < 1,
where

�′ = E�Bn� =
�∑
n=1

nkn =
	

�
E�C�


Stationary Regime. Suppose that �′ < 1 and let � = ��0� �1� 
 
 
 � the stationary
distribution of the Markov chain {Xn n = 1� 2� 
 
 
 } where

�n = lim
k→�

Pr�Xk = n�


We obtain

∏
�z� = �0�K�z�− zC�z��

K�z�− z
� where

�0 =
1− �′

1− �′ + E�C�
� and

K�z� = �

	+ � − 	C�z�
�

the generating function of the number of customers joining in a service period.

2.2. Description of the Queue MGeo/M/1

The system MGeo/M/1 may be described in the following manner. The customers
arrive in batch of random size C̃, following a Poisson process with parameter 	,
and they are individually served. The service times are independent and distributed
following an exponential law with mean 1

�
. The batch size C̃ follows a geometric

distribution with parameter q where,

Pr�C̃ = k� = c̃k = �1− q�qk−1� 0 < q < 1 �k ≥ 1�� (8)

and let C̃�z� the generating function:

C̃�z� = E�zc̃� =
�∑
n=1

c̃nz
n ��z� ≤ 1�
 (9)

Let Ãi, the number of customers arriving at the time instant ti. Pr�Ãi = k� = c̃k.
We have

Pr�Ã1 + Ã2 + · · · + Ãk = n� = c̃n ⊗ c̃n ⊗ · · · ⊗ c̃n︸ ︷︷ ︸
convolution k-product

= C̃�k�
n �

where �C̃�k�
n � is the convolution k-product of c̃n.
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Strong Stability of the Batch Arrival Queue 13

Such that:

C̃�1�
n = Pr�Ãi = n� = c̃n and C̃�0�

n =
{
1 if n = 0

0 if n > 0

Pr�n customers arriving during �0� t�� = p̃n�t�

p̃n�t� =
n∑

k=0

e−	t �	t�
k

k! C̃�k�
n �n ≥ 0�


Consider the following regeneration points:

• the time instant of a customer departure;
• the end of the server idle period.

The random variable X̃n representing the number of customers in the system just
after the nth regeneration point forms a discrete-time Markov chain.

Consider the process B̃n “the number of customers arriving during the time of
the �n�th service.” The random variables B̃n are independent, and their common
distribution is:

k̃n = Pr�n arrivals during the period of service�

=
n∑

k=0

C̃�k�
n

�	k

�	+ ��k+1

(10)

Then

X̃n+1 =
{
X̃n − 1+ B̃n+1 if X̃n ≥ 1

C̃ if X̃n = 0

This shows that X̃n+1 depends only on X̃n and on B̃n+1 and not on values
taken by X̃n−1, X̃n−2� 
 
 
 This means that the sequence {X̃n� n = 1� 2� 
 
 
 } forms an
imbedded Markov chain of the process {X̃�t�� t ≥ 0}.

Transitional Regime. The transition probabilities of the imbedded Markov chain
{X̃n� n = 1� 2� 
 
 
 } allow us to describe the general expression of the transition
kernel P̃ = �P̃ij�, where

P̃ij =


c̃j if j ≥ 1� i = 0

k̃j+1−i if 1 ≤ i ≤ j + 1

0 otherwise

(11)

where k̃i is defined in (10).

Remark 2.2. According to the transition matrix, the Markov chain X̃n is irreducible
and aperiodic, and we can show that it converges to a limiting distribution if �̃′ < 1�
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14 Boukir et al.

where

�̃′ = E�B̃n� =
�∑
n=1

nk̃n =
	

�
E�C̃�
 (12)

Stationary Regime. Suppose that �̃′ < 1 and let �̃ = ��̃0� �̃1� 
 
 
 � the stationary
distribution of the Markov chain {X̃n n = 1� 2� 
 
 
 } where

�̃n = lim
k→�

P�X̃k = n�


We have

∏̃
�z� = �̃0�K̃�z�− zC̃�z��

K̃�z�− z
� where (13)

�̃0 =
��1− q�− 	

��1− q�− 	+ �
� and (14)

K̃�z� = �

	+ � − 	C̃�z�

 (15)

3. Strong Stability in the System MGeo/M/1

In this section, we determine the conditions under which, it is possible to
approximate the characteristics of the system MX/M/1 by those of the system
MGeo/M/1.

Definition 3.1 (cf. [1, 18]). We say that the Markov chain X̃n with transition kernel
P̃ verifying �P̃�v < � and invariant measure �̃ is strongly v-stable, if every
stochastic transition kernel P in the neighborhood �P � �P − P̃�v < �� admits a
unique stationary vector � such that ��̃− ��v → 0 when �P̃ − P�v → 0.

To prove the fact of strong v-stability of our system (result obtained in the
following Theorem 3.1), we apply the Theorem 5.2 given in Appendix. For this, we
first choose

v�k� = 1
�k

+ 	

�
k� � > 1�

(16)

hi =
{
1 if i = 1�

0 if i 
= 1


and

�j = P̃1j = k̃j =
j∑

k=0

C̃
�k�
j

�	k

�	+ ��k+1

 (17)

where P̃1j is defined in (11), and prove the following lemma.
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Strong Stability of the Batch Arrival Queue 15

Lemma 3.1. Consider the following inequality system:
� − 1
�2

<
	

�
�1− �̃′� and

� >
1

1− �̃′ 


This system admits solutions given as follows:

• � ∈ ��3�+�� if 	
�
�1− �̃′� > 1

4 and
• � ∈ ��1�+�� if 	

�
�1− �̃′� ≤ 1

4 , with

�̃′ = 	

�
E�C̃�� �3 =

1
1− �̃′ and �1 =

� +√
�2 − 4	��1− �̃′�
2	�1− �̃′�




Proof 3.1. Consider the function f defined by:

f � �1�+�� → ��

� �→ f��� = � − 1
�2




The study of the function f gives us f��� ≤ 1
4 �∀� > 1.

To solve the first inequality of the system, we have two possible cases:

• Case 1: if 	
�
�1− �̃′� > 1

4 , thus f��� <
	
�
�1− �̃′�.

Then, the system admits solutions for all � ∈ ��3�+��

• Case 2: if 	

�
�1− �̃′� ≤ 1

4 , thus ∃�0 ∈ �1� 2� and �1 ∈ �2��� such that

1
4
≥ f��0� = f��1� =

	

�
�1− �̃′� > 0


So, for � ∈ �1� �0� ∪ ��1��� we have, f��� < f��0� = f��1� = 	
�
�1− �̃′�.

Now compute the values of �0 and �1. For this, we have to solve the following
equation:

	

�
�1− �̃′� = � − 1

�2



which admits two roots:

�0 =
� −√

�2 − 4	��1− �̃′�
2	�1− �̃′�

�

and

�1 =
� +√

�2 − 4	��1− �̃′�
2	�1− �̃′�


 (18)

To determine the domain of � for this second case, it is necessary to situate
the value of �3.
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16 Boukir et al.

• Compare �3 and �1. It is easy to show that �3 − �1 < 0; indeed,

�3 − �1 =
2	

2	�1− �̃′�
− � +√

�2 − 4	��1− �̃′�
2	�1− �̃′�




The sign of �3 − �1 is the sign of

�2	�1− �̃′���2	− � −√
�2 − 4	��1− �̃′��


We know that 2	�1− �̃′� > 0, then it remains to study the sign of

2	− � −√
�2 − 4	��1− �̃′�


We have

E�C̃� > 1�

⇒ 	

�
E�C̃� >

	

�
�

⇒ 4	��̃′ > 4	2�

⇒ √
�2 − 4	��1− �̃′� > �2	− ��


Finally, 2	− � −√
�2 − 4	��1− �̃′� < 0, from where �3 − �1 < 0.

• Compare �3 and �0. We have �3 − �0 > 0.
Indeed,

�3 − �0 =
2	

2	�1− �̃′�
− � −√

�2 − 4	��1− �̃′�
2	�1− �̃′�




The sign of �3 − �0 returns to the sign of the expression

�2	�1− �̃′���2	− � +√
�2 − 4	��1− �̃′��


It is clear that 2	�1− �̃′� > 0 so, study the sign of

2	− � +√
�2 − 4	��1− �̃′�


From

E�C̃� > 1�

we obtain, after multiplying by 	/�,

	

�
E�C̃� >

	

�



We also have

4	��̃′ > 4	2�

D
ow

nl
oa

de
d 

by
 [

C
E

R
IS

T
] 

at
 0

4:
57

 2
0 

A
ug

us
t 2

01
4 



Strong Stability of the Batch Arrival Queue 17

hence √
�2 − 4	��1− �̃′� > �� − 2	�


From where

2	− � +√
�2 − 4	��1− �̃′� > 0


Then �3 − �0 > 0.
Since �3 ∈ ��0� �1�, then the system of inequalities is verified for all � ∈ ��1�+��.

Using the previous results, we clarify in the following theorem the conditions
under which the Markov chain X̃n is strongly v-stable.

Theorem 3.1. Suppose that the ergodicity condition 	
�
E�C̃� < 1 holds. Then, the

Markov chain X̃n is strongly v-stable for the function

v�k� = 1
�k

+ 	

�
k� � > �1


Proof 3.2. To prove the strong v-stability of the Markov chain X̃n, for the function

v�k� = 1
�k

+ 	

�
k� with � > �1�

we apply the strong stability criteria (Theorem 5.2 in Appendix). We first check the
conditions: �̃h > 0, �1 = 1, �h > 0.

• �̃h = ∑
i≥0 �̃ihi = �̃1.

where h is defined in (16) and � in (17). It is known that

�̃j =
∑
i≥0

P̃ij �̃i� where P̃ij is defined in �11�


We obtain �̃j = �̃0c̃j +
j+1∑
i=1

k̃j−i+1�̃i�

then �̃0 = �̃0c̃0 + k̃0�̃1�

and �̃1 =
�̃0

k̃0



From (10),

k̃0 =
�

	+ �
> 0� �	 > 0� � > 0��

and from (14)

�̃0 =
��1− q�− 	

��1− q�− 	+ �
≥ 0
 (19)

Thus, this shows that �̃0 
= 0.
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18 Boukir et al.

We have these equivalences,

�̃0 
= 0 ⇔ ���1− q�− 	� 
= 0�

⇔ 	

��1− q�

= 1�

⇔ �̃′ 
= 1


As �̃′ < 1 thus �̃′ 
= 1 ⇒ �̃0 
= 0.
Then �̃0 > 0. From where

�̃1 =
�̃0

k̃0
> 0


From (17) and (16),

• �1 = ∑
j≥0 �j =

∑
j≥0 P̃1j = 1,

• �h = ∑
i≥0 �ihi = �1 = P̃11 = k̃1.

From (10), we have

k̃1 =
1∑

k=0

C̃
�k�
1

�	k

�	+ ��k+1
�

= �1− q�
�	

�	+ ��2
> 0


Now, verify the conditions a, b and c of Theorem 5.2.

1. We first verify the condition b.

• If i = 1 then,

T1j = P̃1j − P̃1j = 0


• If i = 0 then,

T0j = P̃0j = c̃j = �1− q�qj−1 ≥ 0� with 0 < q < 1� �j ≥ 1�


• If i ≥ 2 then,

Tij = P̃ij = k̃j+1−i ≥ 0


From where, Tij is non negative.
2. Now, we aim to show that there exists some constant � < 1 such that Tv�k� ≤

�v�k�, for all k ∈ � (condition a of Theorem 5.2).
According to Equation (2), Tv�k� = ∑

j≥0 v�j�Tkj . We observe three cases.

• Case 1: k = 1

Tv�1� = ∑
j≥0

v�j�T1j = 0
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Strong Stability of the Batch Arrival Queue 19

• Case 2: k = 0

Tv�0� = ∑
j≥0

v�j�T0j�

= ∑
j≥1

(
1
�j

+ 	

�
j

)
c̃j�

≤ ∑
j≥1

(
1
�
+ 	

�
j

)
c̃j�

= 1
�

∑
j≥1

c̃j +
	

�

∑
j≥1

jc̃j�=
1
�
+ �̃′


Let us choose

� = 1
�
+ �̃′


Then � < 1, under the condition

� >
1

1− �̃′ 
 (20)

• Case 3: k ≥ 2

Tv�k� = ∑
j≥0

v�j�Tkj�

= ∑
j+1−k≥0

(
1
�j

+ 	

�
j

) j+1−k∑
l=0

C̃
�l�
j+1−k

�	l

�	+ ��l+1
�

≤ ∑
n≥0

[
1

�k−1
+ 	

�
�n+ k− 1�

] n∑
l=0

C̃�l�
n

�	l

�	+ ��l+1
�

≤ �1−k + 	

�
�k− 1�+ 	

�
�̃′�

=
[
�1−k + 	

�
�k− 1+ �̃′�

]
× �−k + 	

�
k

�−k + 	
�
k



Choose

� = �1−k + 	
�
k− 	

�
+ 	

�
�̃′

�−k + 	
�
k

and show that � < 1. We have the following equivalences

� < 1 ⇔ ��−k + 	

�
k− 	

�
+ 	

�
�̃′ < �−k + 	

�
k�

⇔ �−k�� − 1� <
	

�
�1− �̃′�
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20 Boukir et al.

Then, determine the domain of � holding:

�� − 1�
�k

<
	

�
�1− �̃′�� k ≥ 2


For k ≥ 2, the following inequality holds

�� − 1�
�k

≤ �� − 1�
�2




So, it suffices to show that

�� − 1�
�2

<
	

�
�1− �̃′�
 (21)

Therefore, � must verify the following system
{

�−1
�2

< 	
� �1−�̃′� and

�> 1
1−�̃′ 


However, from the Lemma 3.1, this system admits at least one solution for all
� > �1, where �1 is defined in (18). Hence, ∃0 < � < 1, defined as follows

� = min

{
�̃′ + 1

�
�
�−k� + 	

�
k− 	

�
+ 	

�
�̃′

�−k + 	
�
k

}
for all � > �1� (22)

such that the condition c is verified.
3. It remains to show that �P̃�v < � (condition a).

T = P̃ − h � � ⇒ P̃ = T + h � ��

and

�P̃�v = �T + h � ��v ≤ �T�v + �h�v × ���v


From (5)

�T�v = sup
k≥0

1
v�k�

∑
j≥0

v�j��Tkj��

≤ sup
k≥0

1
v�k�

�v�k��= � < 1


Also, from (3)

���v =
∑
j≥0

v�j���j��

= ∑
j≥0

(
1
�j

)
k̃j +

∑
j≥0

	

�
jk̃j�

= K̃

(
1
�

)
+ 	

�
�̃′ < �


D
ow

nl
oa

de
d 

by
 [

C
E

R
IS

T
] 

at
 0

4:
57

 2
0 

A
ug

us
t 2

01
4 



Strong Stability of the Batch Arrival Queue 21

Finally from (4)

�h�v = sup
k≥0

1
v�k�

= 1


From where

�P̃�v < �


4. Deviation of the Transition Kernel

To estimate numerically the difference between the stationary distributions of the
Markov chain states X̃n and Xn, let us beforehand estimate the deviation norm of
the transition kernels P and P̃.

Theorem 4.1. Let P̃ and P the transition kernels of the imbedded Markov chains of
systems MGeo/M/1 and MX/M/1. Then, for all � such that � > �1 where �1 is defined
in (18), we have

�P − P̃�v ≤
2�
	

+ �′ + �̃′


Proof 4.1. From the expression (5) we have

�P − P̃�v = sup
k≥0

1
v�k�

∑
j≥0

v�j��Pkj − P̃kj��

�P − P̃�v = sup
{∑

j≥0

v�j��P0j − P̃0j�� sup
k≥1

1
v�k�

∑
j≥0

v�j��Pkj − P̃kj�
}



Estimate first, the first expression under the supremum.

∑
j≥0

v�j��P0j − P̃0j� =
∑
j≥1

(
1
�j

+ 	

�
j

)
�cj − c̃j��

≤ C

(
1
�

)
+ C̃

(
1
�

)
+ 	

�
E�C�+ 	

�
E�C̃��

≤ C

(
1
�

)
+ C̃

(
1
�

)
+ �′ + �̃′


Estimate now, the second expression under the supremum.

sup
k≥1

1
v�k�

∑
j≥0

v�j��Pkj − P̃kj�

= sup
k≥1

1

�−k + 	
�
k

∑
j+1−k≥0

(
�−j + 	

�
j

)

×
∣∣∣∣ j+1−k∑

l=0

C
�l�
j+1−k

�	l

�	+ ��l+1
−

j+1−k∑
l=0

C̃
�l�
j+1−k

�	l

�	+ ��l+1

∣∣∣∣�
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22 Boukir et al.

≤ sup
k≥1

1

�−k + 	
�
k

{
�1−k

(∑
n≥0

n∑
l=0

C�l�
n

�	l

�	+ ��l+1
+∑

n≥0

n∑
l=0

C̃�l�
n

�	l

�	+ ��l+1

)

+ 	

�
�k− 1�

(∑
n≥0

n∑
l=0

C�l�
n

�	l

�	+ ��l+1
+∑

n≥0

n∑
l=0

C̃�l�
n

�	l

�	+ ��l+1

)

+ 	

�

∑
n≥0

n
n∑

l=0

C�l�
n

�	l

�	+ ��l+1
+ 	

�

∑
n≥0

n
n∑

l=0

C̃�l�
n

�	l

�	+ ��l+1

}



From where, we have:

sup
k≥1

1
v�k�

∑
j≥0

v�j��Pkj − P̃kj�

≤ sup
k≥1

1

�−k + 	
�
k

{
2�1−k + 2	

�
�k− 1�+ 	

�
��′ + �̃′�

}



sup
k≥1

1
v�k�

∑
j≥0

v�j��Pkj − P̃kj� ≤ sup
k≥1

{
2��
�kk	

+ 2�k− 1�
k

+ 1
k
��′ + �̃′�

}



The sup is reached by 1, then,

sup
k≥1

1
v�k�

∑
j≥0

v�j�
∣∣Pkj − P̃kj

∣∣ ≤ 2�
	

+ �′ + �̃′


From where,

�P − P̃�v ≤ sup
{
C

(
1
�

)
+ C̃

(
1
�

)
+ �′ + �̃′�

2�
	

+ �′ + �̃′
}



Finally

�P − P̃�v ≤
2�
	

+ �′ + �̃′ since
�

	
> 1


5. Inequalities of Stability

The inequalities of stability provide an estimation of the difference between the
stationary distributions of the Markov chains Xn and X̃n.

Consider the two imbedded Markov chains Xn and X̃n in the queueing systems
MX/M/1 and MGeo/M/1 respectively, with transition kernels P and P̃. Let � and �̃

their stationary probabilities. We have shown (in Theorem 3.1) that X̃n is strongly v-
stable. Applying the Theorem 5.3 (see the Appendix), we obtain the following result.

Theorem 5.1. Suppose that the imbedded Markov chain X̃n of the system MGeo/M/1
is strongly v-stable. Then under the condition ���v < �1−��

C
, and for all � > �1, the

following inequality is verified

��− �̃�v ≤ �1− ����̃�v�1− �− C���v�−1
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Strong Stability of the Batch Arrival Queue 23

Where � is defined in (22),

C = 1+ ���v��̃�v�
� = P − P̃

and ��̃�v = �̃
(
1
�

)+ 	
�
E�X̃n�.

Proof 5.1. From the expression (4), we have

���v = sup
k≥0

1
v�k�

= 1


And from (3)

��̃�v =
∑
j≥0

v�j��̃j�=
∑
j≥0

(
1
�

)j

�̃j +
	

�

∑
j≥0

j�̃j


From where

��̃�v = �̃

(
1
�

)
+ 	

�
E�X̃n�


with,

�̃
(
1
�

)
, the generating function of X̃n at point

(
1
�

)
.

E�X̃n�, the expectation of X̃n = �̃′�1�.

E�X̃n� =
2E�C̃�+ C̃ ′′�1�+ E�C̃�K̃′′�1�

2�1− ��
�

C̃ ′′�1� = 2q
�1− q�2

�

K̃′′�1� = 2
(
	

�
V�C̃�+ �̃2

)
�

V�C̃� = q

�1− q�2



Impose the condition �P − P̃�v < 1−�

c
, i.e., ���v < 1−�

c
and replace the constants by

their values, we will then have:

��− �̃�v ≤ �1− ����̃�v�1− �− C���v�−1


6. Conclusion

We have clarified the conditions under which it will be possible to approximate the
characteristics of the queueing system MX/M/1 by those of the system MGeo/M/1.
We also have obtained the inequalities of stability with an exact computation of
constants. These results can be a concrete practical application. To do this, it is
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24 Boukir et al.

necessary to quantify the approximation error by applying the algorithmic approach
proposed in [6].

Appendix: Strong Stability Criterion

The following theorem gives sufficient conditions for the strong stability of a Harris
Markov chain.

Theorem 5.2 ([1, 18]). The Harris Markov chain Xn, with transition operator P and
invariant measure � is v-strongly stable, if and only if there exists a measure � on ����
and a non-negative measurable function h on � such that: �h > 0, �� = 1, �h > 0 and

a. �P�v < �
b. The operator T = P − ho� is non-negative
c. ∃� < 1 such that Tv�k� ≤ �v�k�, ∀k ∈ �

where o denotes the convolution between a measure and a function and � is the identity
function.

When approximating a system by another, it is important to give an idea about
the approximation error. Usually, stability methods provide quantitative estimates.
One of the characteristic of the strong stability method is the obtaining of the
inequalities with an exact computation of constants. The following Theorem 5.3
allows us to obtain the deviation of the stationary distribution of the Markov
chain Xn.

Theorem 5.3 ([18]). Let a Markov chain Xn, with transition operator P and invariant
measure �, verifying conditions of Theorem 5.2. Then, for a transition operator Q,
with invariant measure �, in the neighborhood of P and for ���v < �1−��

c
, we have the

estimation

�� − ��v ≤ ���vc���v�1− �− c���v�−1�

where

� = Q− P�

c = 1+ ���v���v�

and

���v ≤ ��v��1− ��−1��h�
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